Symmetric tensors on the intersection of two quadrics and Lagrangian fibration

A. Beauville, A. Etesse, A. Höring, J. Liu and C. Voisin

Abstract

Let X be an n-dimensional (smooth) intersection of two quadrics, and let T^*X be its cotangent bundle. We show that the algebra of symmetric tensors on X is a polynomial algebra in n variables. The corresponding map $\Phi : T^*X \to \mathbb{C}^n$ is a Lagrangian fibration, which admits an explicit geometric description: its general fiber is a Zariski open subset of an abelian variety, the quotient of a hyperelliptic Jacobian by a 2-torsion subgroup. In dimension 3, Φ is the Hitchin fibration of the moduli space of rank 2 bundles with fixed determinant on a curve of genus 2.

2020 Mathematics Subject Classification 14J45, 70H06.

Keywords: symmetric tensors, quadrics, Lagrangian fibration, completely integrable systems, Hitchin fibration.